Genealogy of Religion / Cris Campbell

Cris Campbell holds advanced degrees in anthropology, philosophy, and law. This (WordPress) blog is his research database and idea playspace. (The most recent post seems to be in 2015, but there is plenty to explore)

 

Why “Hunter-Gatherers and Religion”?

Anyone who surveys the “religious” beliefs of hunter-gatherers (or foragers) will almost immediately discover that many of them do not have a word that translates as “religion” and do not understand the Western concept of “religion,” as explained to them by ethnographers and others.  Anyone who engages in such a survey will also soon discover that hunter-gatherers have a dazzling and sometimes bewildering array of beliefs related to the cosmos, creation, spirits, gods, and the supernatural.  Within a single group, these beliefs may be different and contradictory from individual to individual; the beliefs are often fluid and change considerably over time.  When comparing groups, the details — at least on the surface — seem to be so different that nothing general can be said about foragers on the one hand and their beliefs on the other hand.  Despite this variety, one can identify certain common themes, motifs and tropes that are characteristic of hunter-gatherer metaphysics.  These include:

  • A generalized belief in higher powers, which may be gods, spirits, or other forces; (I would modify this based on those who are visual thinkers and do not make abstract “things”)
  • A spiritualized reverence for nature and everything of nature; (what does ‘spiritualized’ entail? This is one of those Weasel Words that is never defined)
  • A cosmology oriented horizontally rather than vertically; “egalitarian”
  • A cyclic notion of time and perpetual renewal; and (or non-time, ie “living in the present”)
  • A belief array that includes animism, ritualism, totemism and shamanism. (these are all “western” inventions. The people supposedly practicing these “religions” may not see any difference or separation between these categorizations and behaviors of everyday life. There are atheist hunter-gatherers)

Because humans have been foragers for the vast majority of their time on earth, understanding the supernatural beliefs and practices of hunter-gatherers is essential to any genealogy of religion.  This Category will examine those beliefs as part of a larger effort to trace the history of religion.

How ironic! It is modern social humans who are trapped in a supernatural dimension created by “magic words”

Advertisements

Beauty from the Broken / Visual metaphors for human survival

Broken, lovingly repaired survivors: How I see certain people…

   

Musings on THE SELF /

 

Excerpts various posts: 

https://aspergerhuman.wordpress.com/2017/07/25/co-consciousness-social-typical-dependence-on-word-thinking/

A child is told who it is, where it belongs, and how to behave, day in and day out, from birth throughout childhood (and indeed, throughout life.) In this way culturally-approved patterns of thought and behavior are imparted, organized and strengthened in the child’s brain. Setting tasks that require following directions (obedience) and asking children to ‘correctly’ answer questions along the way, helps parents and society to discover if the preferred responses are in place.

I don’t remember blurting out “Cogito ergo sum!” in school one day. Achieving awareness of my existence was a misty process, a journey taken before I “knew” of an existence of a “self”. Identity (which is not the same as personality) does not pre-exist; it is constructed. Long before a baby is conceived and born, family and society have composed an identity and a comprehensive world picture for it. The majority of those who belong to a religion or a social class are members by accident of birth, not by choice. We are born into cultures and belief systems; into versions of reality invented by humans long departed.

https://aspergerhuman.wordpress.com/2018/05/20/self-awareness-omg-what-a-hornets-nest/

Self awareness comes as we live our lives: true self-esteem is connected to that process, not as a “before” thing, but an “after” thing: a result of meeting life as it really is, not as a social fantasy. Self awareness is built from the expression of talents and strengths that we didn’t know we possessed. It also arises as we see the “world” as its pretentions crumble before us. Being able to see one’s existence cast against the immensity of reality, and yet to feel secure, is the measure of finally giving birth to a “self”. 

https://aspergerhuman.wordpress.com/2016/10/30/express-yourself-or-express-oneself-social-vs-hyposocial/

As a “hyposocial” individual, tattooing is somewhat of a mystery: tattoos are a social “sign of commitment” to a group or belief system, whether or not that group is large or consists of one other person. My reaction is: But what if you change your mind? What if your “self” changes? The notion of a “static” self is difficult to grasp.

Me, me, me, me, me! The social typical orientation. This is how NTs “look” to me. 

https://aspergerhuman.wordpress.com/2018/05/07/what-is-the-asperger-blank-stare-all-about/

One of the big mistakes that social typicals make is to attribute intent to Asperger behavior. This is because social typicals are “self-oriented” – everything is about THEM; any behavior on the part of a human, dog, cat, plant or lifeform in a distant galaxy, must be directed at THEM. Example: God, or Jesus, or whomever, is believed to be paying attention 24/7 to the most excruciatingly trivial moments in the lives of social typicals. We’re not as patient as God or Jesus.

The Asperger default mental state is a type of reverie, day-dreaming, trance or other “reflective” brain process; that is, we do “intuitive” thinking. The “blank face” is because we do not use our faces to do this type of thinking. 

Sorry – we’re just busy elsewhere! When you ask a question, it can take a few moments to “come out of” our “reverie” and reorient our attention. If you are asking a “general question” that is meant to elicit a “feeling” (social) response, it will land like a dead fish in front of us. Hence the continued “blankness”. 

https://aspergerhuman.wordpress.com/2017/04/11/to-see-with-the-minds-eye-what-does-it-mean/

The self is “imported” from a socio-cultural menu.

It is a very common assumption that all people “think and act” exactly alike. (Thus the insistence that “underneath it all, everyone is the same” – often said by white people to end discussions of racism) When I was a child I also thought that everyone had “the same brain” as if they roll off an assembly line into our skulls, and it created no end of problems! How could people “come up with” bizarre conclusions and irrational explanations for perfectly logical occurrences? And then one day, I realized that my brain “worked” differently than just about everyone I had ever met. This was a giant leap toward self awareness of the good news / bad news type.   

It is exactly this human self-centeredness that makes the “Theory of Mind” and “mind-reading” so laughable.

Neurotypicals assume that the other person thinks and feels as they do: this is a good “guess” when social people account for 99% of the population and the self is “imported” from an extremely limited socio-cultural menu. And, social people are taught to automatically agree with what others say, in order to be considered a “nice person”. 

Who am I?

The answer for me turned out to be simple: I am everything I have ever seen. Meep! Meep!

especially when young, asks,

 

 

 

 

 

CODE Marcus Sautoy / Fantastic “math in nature” for visual learners

The CODE is a three-part visual exploration of how the mathematics that are the “blueprint” for our universe are concealed in nature. My reaction: Why isn’t mathematics introduced to children using this concrete visual method? For those of us who are “math as abstract language” impaired, videos like this are essential to grasping the importance of mathematics.

There are many other videos by Sautoy available on youtube, notably the history of the development of math languages. 

Part 2 introduces geometry essential to geologic processes and structures; very familiar to anyone interested in mineralogy AND so incredibly beautiful and simple. If you don’t view anything else, at least check out the “bubble” segment starting at 10:53. 

Disappointing video quality: looking for something better! 

Contemplating Dream Experiences

Where did the world go?

Where did the world go?

After I woke up from a particularly confusing jumble of dream images one morning, it occurred to me that the brain during sleep may be reacting to being cut off from the environment, as if it’s locked in a dark closet. The brain depends on a stream of information arriving from the senses; it uses this information to make sense of the environment and to model “reality.” Maybe it ‘freaks out’ when the visual information stream shuts down.

During REM sleep the brain tries to combine peripheral sensations with memory (like sounds from the street, or temperature changes in the room) but without the necessary full connection to the “outer world” via the senses, a coherent story can’t be composed. That is, the brain’s function, which is to make sense of the environment, is  to write an ongoing story that integrates all the available information that the brain needs to direct and control the body.

Deprived during sleep of sense information, especially visual orientation, the brain simply can’t thread images, sounds and motion into a coherent story. Whatever we may “dream” it is mostly forgotten, and if we do remember, the brain then strives to make a reasonable story from fragments that we can recall.

A Plea for Visual Thinking / Rudolf Arnheim

http://g-e-s-t-a-l-t.org/MEDIA/PDF/A-Plea-for-Visual-Thinking.pdf

A Plea for Visual Thinking

see also an interview with RA:  http://www.cabinetmagazine.org/issues/2/rudolfarnheim.php

Rudolf Arnheim Reviewed work(s): Source: Critical Inquiry, Vol. 6, No. 3 (Spring, 1980), pp. 489-497 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/1343105 . Accessed: 31/01/2013 13:04

Perception and thinking are treated by textbooks of psychology in separate chapters. The senses are said to gather information about the outer world; thinking is said to process that information. Thinking emerges from this approach as the “higher,” more respectable function, to which consequently education assigns most of the school hours and most of the credit. The exercise of the senses is a mere recreation, relegated to spare time.

It is left to the playful practice of the arts and music and is readily dispensed with when a tight budget calls for economy. The habit of separating the intuitive from the abstractive functions, as they were called in the Middle Ages, goes far back in our tradition. Descartes, in the sixth Meditation, defined man as “a thing that thinks,” to which reasoning came naturally (it obviously doesn’t!); whereas imagining, the activity of the senses, required a special effort and was in no way necessary to the human nature or essence. (The arts and technology are vital to human health and happiness -)

Note: We see the “elevation” of these narrow ideas about “a hierarchy of thinking” (that damn pyramid obsession again) in the denigration of ASD / Asperger abilities: (formal, old-fashioned use of language if language is present; echoing or copying (parroting) of language with an extensive “memorized” vocabulary, but without a “clue” to the “deeper meaning”  of language; an indictment of ASD / AS individuals as robots that are utterly lacking in imagination or creativity; as enthralled by boring subject matter (to social types) and above all, the failure to accomplish what has recently been elevated to the “highest level of cognition attainable, socio-emotional language, exemplified by: Have a nice day!

For “verbally deficient” autistics, this means an immediate judgement of low intelligence.  

So far, we have a very clear historical explanation as to why “visual-sensory thinking” got trashed, demoted and eventually designated as a “developmental disability” by American psychologists. This vital and creative cognitive process has vanished from the “acceptable human social repertoire” of “brain activity” in puritanical” American culture.  

The passive ability to receive images of sensory things, said Descartes, would be useless if there did not exist in the mind a further and higher active faculty capable of shaping these images and of correcting the errors that derive from sensory experience. (Exactly backwards to how thinking works) A century later Leibniz spoke of two levels of clear cognition.’ Reasoning was cognition of the higher degree: it was distinct, that is, it could analyze things into their components. Sensory experience, on the other hand, was cognition of the lower order: it also could be clear but it was confused, in the original Latin sense of the term; that is, all elements fused and mingled together in an indivisible whole. Thus artists, who rely on this inferior faculty (as do many top inventors and scientists), are good judges of works of art but when asked what is wrong with a particular piece that displeases them can only reply that it lacks nescio quid, a certain “I don’t know what.” (Intuitively, you “get it” or you don’t)

Yes, the Descartes – thing is nonsense. Just because a man is a genius is one field, doesn’t mean that he is an expert on everything; but NTs love authority and will believe without question what “great men” say. Our present predicament of relying on a “false pyramid of thinking” based on “dumb” (not reasonable) value judgements from (European white male) heroes of the past, has devastated the power of thinking “outside the box of verbal abstraction and generalities” in entire societies.

In our own time, language has been designated as the place of refuge from the problems incurred in direct perceptual experience; this in spite of the fact that language, although a powerful help to our thinking, does not offer in and by itself an arena in which thinking can take place. Thus the very title of a recent collection of articles by Jerome S. Bruner suggests that in order to arrive at knowledge the human mind must go “beyond the information given” by direct sensory experience. Bruner adopts the belief that the cognitive development of a child passes through three stages. The child explores the world first through action, then through imagery, and finally through language. 

The implication is, unfortunately, that with the arrival at a next level the earlier one falls by the wayside.

This is obviously untrue: adults retain modes of “thinking” from childhood stages. Magical thinking is the default mode of thinking for neotenic social typicals. Magic  “fills in” the gaps left by inferior sensory data and perception, supplying “fantastical” explanations for phenomena. Reasoning, critical analysis, and effective understanding of “how the universe works” (math-science) may be native to a few individuals, but must be taught and cultivated in the majority of children. This is a taboo in highly religious American culture. Reality-based thinking has been abandoned, even demonized, in American education – and for several generations – in favor of socially-promoted emotional narcissism that contributes to a very distorted social reality and description of “being human.” That is, a supernatural orientation is the result of developmental stagnation, and furnishes the status quo in religious, psychological and social engineering regimes. Neoteny is a fact of life for the modern social human. 

Thus when the child learns to go beyond a particular constellation directly given to his eyes, the ability to restructure the situation in a more suitable way is not credited by Bruner to the maturing of perceptual capacity but to the switch toward a new processing medium, namely, language. Thus language is praised as the indispensable instrument for essential refinements of the mind, toward which in fact, language is little more than a reflector.

To claim that “cognition” suddenly appeared out of nowhere, only with the “arrival of human verbal language” is idiotic and unbelievably arrogant! 550 million years of “arms race” evolution, but “sensory thinking” is inferior…

We are told by psychologists that “autistic” children are defective (low intelligence) due to two outrageous prejudices:

1. Lack of verbal language use, and/or failure to use language as prescribed (social scripts) is automatically a “sign” of defective development. (This overturns and discards 550 millions of years of evolution)

2. Superior sensory perception and processing, which are autistic strengths, are denigrated as ‘low-level’ cognition.

Since experts insist that perception offers nothing better than the fairly mechanical recording of the stimuli arriving at the sensory receptors, it is useful to respond with a few examples which show that perception transcends constantly and routinely the mere mechanical recording of sensory raw material. (I am limiting myself in the following to visual perception.) At a fairly simple level, the psychologist Roger N. Shepard and his coworkers have shown that visual imagination can rotate the spatial position of a given object when a different view is needed to solve a problem, for example, in order to identify the object with, or distinguish it from, a similar one. (I have noted previously that this type of “test” is a very limited and rule-based conception of what visual thinking can and does accomplish) This is worth knowing. But reports by artists and scientists indicate that visual imagination is capable of much more spectacular exploits. Indeed, the imagination of the average person demands our respect.

Let me use an example cited in an article by Lewis E. Walkup. The solution of the puzzle should be attempted without the help of an illustration. Imagine a large cube made up of twenty-seven smaller cubes, that is, three layers of nine cubes each. Imagine further that the entire outer surface of the large cube is painted red and ask yourself how many of the smaller cubes will be red on three sides, two sides, one side, or no side at all.

SEE Skipped TEXT

Far from abandoning our image, we discovered it to be a beautiful, composition, in which each element was defined by its place in the whole. Did we need language to perform this operation? Not at all; although language could help us to codify our results. Did we need intelligence, inventiveness, creative discovery? Yes, some. In a modest way, the operation we performed is of the stuff that good science and good art are made of.

Was it seeing or was it thinking that solved the problem? Obviously, the distinction is absurd.

In order to see we had to think; and we had nothing to think about if we were not looking. But our claim goes farther. We assert not only that perceptual problems can be solved by perceptual operations but that productive thinking solves any kind of problem in the perceptual realm because there exists no other arena in which true thinking can take place. Therefore it is now necessary to show, at least sketchily, how one goes about solving a highly “abstract” problem. For the sake of an example, let me ask the old question of whether free will is compatible with determinism. Instead of looking up the answer in Saint Augustine or Spinoza, I watch what happens when I begin to think. In what medium does the thinking take place? Images start to form. Motivational forces, in order to become manipulable, take the shape of arrows. These arrows line up in a sequence, each pushing the next-a deterministic chain that does not seem to leave room for any freedom (fig. la). Next I ask What is freedom? and I see a sheaf of vectors issuing from a base (fig. lb). Each arrow is free, within the limits of the constellation, to move in any direction it pleases and to reach as far as it can and will. But there is something incomplete about this image of freedom. It operates in empty space, and there is no sense to freedom without the context of the world to which it applies. My next image adds an external system of a world minding its own business and thereby frustrating the arrows that issue from my freedom-seeking creature (fig. ic). I must ask: Are the two systems incompatible in principle? In my … GO TO: 

http://g-e-s-t-a-l-t.org/MEDIA/PDF/A-Plea-for-Visual-Thinking.pdf

 

Exciting Paper / Enhanced Perception (Autism)

Royal Society Publishing
Note: I think this “pattern-structure perception” applies also to Asperger individuals who are visual sensory thinkers, but proficient in verbal language. That is, it’s not an “either or” situation in actual brains. (This “either or” insistence is NT projection of their black and white, oppositional, competitive obsession). Specific brains can and do process and sensory info and utilize verbal language; these are not “matter-antimatter” interactions as NTs imagine.  

Enhanced perception in savant syndrome: patterns, structure and creativity

Laurent Mottron, Michelle Dawson, Isabelle Soulières / .

Full paper: http://rstb.royalsocietypublishing.org/content/364/1522/1385.long

5. Savant creativity: a different relationship to structure

Savant performance cannot be reduced to uniquely efficient rote memory skills (see Miller 1999, for a review), and encompasses not only the ability for strict recall, requiring pattern completion, but also the ability to produce creative, new material within the constraints of a previously integrated structure, i.e. the process of pattern generation. This creative, flexible, albeit structure-guided, aspect of savant productions has been clearly described (e.g. Pring 2008). It is analogous to what Miller (1999, p. 33) reported on error analyses in musical memory: ‘savants were more likely to impose structure in their renditions of musical fragments when it was absent in the original, producing renditions that, if anything, were less ‘literal’ than those of the comparison participants’. Pattern generation is also intrinsic to the account provided by Waterhouse (1988).

The question of how to produce creative results using perceptual mechanisms, including those considered low-level in non-autistics, is at the very centre of the debate on the relationship between the nature of the human factor referred to as intelligence and the specific cognitive and physiological mechanisms of savant syndrome (maths or memory, O’Connor & Hermelin 1984; rules or regularities, Hermelin & O’Connor 1986; implicit or explicit, O’Connor 1989; rhyme or reason, Nettlebeck 1999). It also echoes the questions raised by recent evidence of major discrepancies in the measurement of autistic intelligence according to the instruments used (Dawson et al. 2007).

A combination of multiple pattern completions at various scales could explain how a perceptual mechanism, apparently unable to produce novelty and abstraction in non-autistics, contributes in a unique way to autistic creativity. The atypically independent cognitive processes characteristic of autism allow for the parallel, non-strategic integration of patterns across multiple levels and scales, without information being lost owing to the automatic hierarchies governing information processing and limiting the role of perception in non-autistics. (Remember; in visual perception and memory the image is the content; therefore it is dense with detail and connections – “patterns”. NTs “fill-in” the gaps in their perception with “magical / supernatural” explanations for phenomena)

An interest in internal structure may also explain a specific, and new, interest for domains never before encountered. For example, a savant artist newly presented with the structure of visual tones learned this technique more rapidly and proficiently than typical students (Pring et al. 1997). In addition, the initial choice of domain of so-called restricted interest demonstrates the versatility of the autistic brain, in the sense that it represents spontaneous orientation towards, and mastering of, a new domain without external prompts or instruction. How many such domains are chosen would then depend on the free availability of the kinds, amounts and arrangements of information which define the structure of the domain, according to aspects of information that autistics process well. Generalization also occurs under these circumstances, for example, to materials that share with the initial material similar formal properties, i.e. those that allow ‘veridical mapping’ with the existing ability. In Pring & Hermelin (2002), a savant calendar calculator with absolute pitch displayed initial facility with basic number–letter associations, and was able to quickly learn new associations and provide novel manipulations of these letter–number correspondences.

The apparently ‘restricted’ aspects of restricted interests are at least partly related to pattern detection, in that there are positive emotions in the presence of material presenting a high level of internal structure, and a seeking out of material related in form and structure to what has already been encountered and memorized. Limitation of generalization may also be explained by the constraints inherent in the role of similarity in pattern detection, which would prevent an extension of isomorphisms to classes of elements that are excessively dissimilar to those composing the initial form. In any case, there is no reason why autistic perceptual experts would be any less firm, diligent or enthusiastic in their specific preferences for materials and domains than their non-autistic expert counterparts. However, it must also be acknowledged that the information autistics require in order to choose and generalize any given interest is likely to be atypical in many respects (in that this may not be the information that non-autistics would require), and may not be freely or at all available. In addition, the atypical ways in which autistics and savants learn well have attracted little interest and are as yet poorly studied and understood, such that we remain ignorant as to the best ways in which to teach these individuals (Dawson et al. 2008). Therefore, a failure to provide autistics or savants with the kinds of information and opportunities from which they can learn well must also be considered as explaining apparent limitations in the interests and abilities of savant and non-savant autistics (see also Heaton 2009).

6. Structure, emotion and expertise

While reliable information about the earliest development or manifestations of savant abilities in an individual is very sparse, biographies of some savants suggest a sequence starting with uninstructed, sometimes apparently passive, but intent and attentive (e.g. Horwitz et al. 1965; Selfe 1977; Sacks 1995) orientation to and study of their materials of interest. In keeping with our proposal about how savants perceive and integrate patterns, materials that spontaneously attract interest may be at any scale or level within a structure, including those that appear unsuitable for the individual’s apparent developmental level. For example, Paul, a 4-year-old autistic boy (with a presumed mental age of 17 months), who was found to have outstanding literacy, exceeding that of typical 9-year olds, intently studied newspapers starting before his second birthday (Atkin & Lorch 2006). It should not be surprising that in savants, the consistent or reliable availability of structured or formatted information and materials can influence the extent of the resulting ability. For example, the types of words easily memorized by NM, proper names, in addition to being redundant in Quebec, share a highly similar structural presentation in the context where NM learned them, including phone books, obituaries and grave markers (Mottron et al. 1996, 1998). However, a fuller account of why there is the initial attraction to and preference for materials with a high degree of intrinsic organization, and for specific kinds of such structured materials in any particular individual, is necessary.

Positive emotions are reported in connection with the performance of savant abilities (e.g. Selfe 1977; Sloboda et al. 1985; Miller 1989). Therefore, it is possible that a chance encounter with structured material gives birth to an autistic special interest, which then serves as the emotional anchor of the codes involved in savant abilities, associated with both positive emotions and a growing behavioural orientation towards similar patterns (Mercier et al. 2000). Brain structures involved in the processing of emotional content can be activated during attention to objects of special interest in autistics (Grelotti et al. 2005). So-called repetitive play in autism, associated with positive emotions, consists of grouping objects or information encompassing, as in the codes described above, series of similar or equivalent attributes. In addition, in our clinical experience, we observe that repetitive autistic movements are often associated with positive emotions.

One possibility worth further investigation would be that patterns in structured materials, in themselves, may trigger positive emotions in autism and that arbitrary alterations to these patterns may produce negative emotions (Yes! Stop f—ing with our interests!)—a cognitive account of the insistence on sameness with which autistics have been characterized from the outset (Kanner 1943). Individuals who excel in detecting, integrating and completing patterns at multiple levels and scales, as we propose is the case with savants, would have a commensurate sensitivity to anomalies within the full array of perceived similarities and regularities (e.g. O’Connell 1974). In Hermelin & O’Connor (1990), an autistic savant (with apparently very limited language skills) known for his numerical abilities, including factorization, but who had never been asked to identify prime numbers, instantly expressed—without words—his perfect understanding of this concept when first presented with a prime number. The superior ability of autistics to detect anomalies—departures from pattern or similarity—has accordingly been reported (e.g. Plaisted et al. 1998; Baron-Cohen 2005).

Overexposure to material highly loaded with internal structure plausibly favours implicit learning and storage of information units based on their perceptual similarity, and more generally, of expertise effects. Savants benefit from expertise effects to the same extent as non-autistic experts (Miller 1999). Among expertise effects is the recognition of units at a more specific level compared with non-experts and the suppression of negative interference effects among members of the same category. Reduced interference has been demonstrated between lists of proper names in a savant memorizer (Mottron et al. 1998). Another expertise effect is the ‘frequency effect’, the relative ease with which memorization and manipulation of units, to which an individual has been massively exposed, can be accomplished (Segui et al. 1982). For example, Heavey et al. (1999) found that calendar calculators recalled more calendar-related items than controls matched for age, verbal IQ and diagnosis, but exhibited unremarkable short- or long-term recall of more general material unrelated to calendars. These two aspects of expertise would favour the emergence and the stabilization of macrounits (e.g. written code in a specific language, or set of pitches arranged by harmonic rules), which are perceptually the spatio-temporal conjunctions of recognizable patterns related by isomorphisms. Conversely, pattern detection may be unremarkable or even diminished in the case of arbitrarily presented unfamiliar material (Frith 1970).

Identifying savant syndrome as aptitude, material availability and expertise, combined with an autistic brain characterized by EPF, is also informative on the relationship between savant syndrome and peaks of ability in non-savant autistics. Perceptual peaks are largely measured using materials with which the participant has not been trained, whereas savant syndrome encompasses the effects of a life spent pursuing the processing of specific information and materials. We therefore forward the possibility that the range and extent of autistic abilities may be revealed only following access to specific kinds, quantities and arrangements of information. However, we do not expect savant abilities to differ from non-savant autistic peaks of ability in their basic mechanisms. According to this understanding of differences between savant and non-savant autistics, the fact that not all autistics are savants is no more surprising than the fact that not all non-autistics are experts.

NTs fill-in the gaps in their perception of the environment with magical beliefs; magical thinking is a developmental stage in young children.  

What psychologists say: Stage by Stage, age 3 – 4

  • Threes and fours often use magical thinking to explain causes of events.
  • Preschoolers sometimes assign their own thinking as a reason for occurrences that are actually out of their control.
  • Three- and 4-year-olds believe, with their powers of magical thinking, that they can change reality into anything they wish.

ASD / AS Intelligence Revisited / Guess what? We’re intelligent. DUH!

PLoS One. 2011; 6(9): e25372.
Published online 2011 Sep 28. doi:  10.1371/journal.pone.0025372
PMID: 21991394

The Level and Nature of Autistic Intelligence II: What about Asperger Syndrome?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182210/

Isabelle Soulières, 1 , 2 , * Michelle Dawson, 1 Morton Ann Gernsbacher, 3 and Laurent Mottron  / Efthimios M. C. Skoulakis, Editor

Introduction

Individuals on the autistic spectrum are currently identified according to overt atypicalities in socio-communicative interactions, focused interests and repetitive behaviors [1]. More fundamentally, individuals on the autistic spectrum are characterized by atypical information processing across domains (social, non-social, language) and modalities (auditory, visual), raising the question of how best to assess and understand these individuals’ intellectual abilities. Early descriptions [2], [3] and quantifications (e.g. [4]) of their intelligence emphasized the distinctive unevenness of their abilities. While their unusual profile of performance on popular intelligence test batteries remains a durable empirical finding [5], it is eclipsed by a wide range of speculative deficit-based interpretations. (based on socio-cultural arrogance) Findings of strong performance on specific tests have been regarded as aberrant islets of ability arising from an array of speculated deficits (e.g., “weak central coherence”; [6]) and as incompatible with genuine human intelligence.

For example, Hobson ([7], p. 211) concluded that regardless of strong measured abilities in some areas, autistics lack “both the grounding and the mental flexibility for intelligent thought.

Thus, there is a long-standing assumption that a vast majority of autistic individuals are intellectually impaired. In recent years, this assumption has been challenged by investigations that exploit two divergent approaches —represented by Wechsler scales of intelligence and Raven’s Progressive Matrices— to measuring human intelligence [8]. Wechsler scales estimate IQ through batteries of ten or more different subtests, each of which involves different specific oral instructions and tests different specific skills. The subtests are chosen to produce scores that, for the typical population, are correlated and combine to reflect a general underlying ability. Advantages of this approach include the availability of subtest profiles of specific skill strengths and weaknesses, index scores combining related subtests, and dichotomized Performance versus Verbal IQ scores (PIQ vs. VIQ), as well as a Full-Scale IQ (FSIQ) score. However, the range of specific skills assayed by Wechsler scales is limited (e.g., reading abilities are not included), and atypical individuals who lack specific skills (e.g., typical speech processing or speech production) or experiences (e.g., typical range of interests) may produce scores that do not reflect those individuals’ general intelligence.

In contrast, Raven’s Progressive Matrices (RPM) is a single self-paced test that minimizes spoken instruction and obviates speech production or typicality of experiences [9]. The format is a matrix of geometric designs in which the final missing piece must be selected from among an array of displayed choices. Sixty items are divided into five sets that increase progressively in difficulty and complexity, from simple figural to complex analytic items. RPM is regarded both as the most complex and general single test of intelligence [10], [11] and as the best marker for fluid intelligence, which in turn encompasses reasoning and novel problem-solving abilities [8], [12]. RPM tests flexible co-ordination of attentional control, working memory, rule inference and integration, high-level abstraction, and goal-hierarchy management [13], . These abilities, as well as fluid intelligence itself, have been proposed as areas of deficit in autistic persons, particularly when demands increase in complexity [16], [17], [18], [19].

Against these assumptions, we reported that autistic children and adults, with Wechsler FSIQ ranging from 40 to 125, score an average 30 percentile points higher on RPM than on Wechsler scales, while typical individuals do not display this discrepancy, as shown in Figure 1 [20]. RPM item difficulty, as reflected in per-item error rate, was highly correlated between the autistic and non-autistic children (r = .96). An RPM advantage for autistic individuals has been reported in diverse samples. Bolte et al. [21] tested autistic, other atypical (non-autism diagnoses), and typical participants who varied widely in their age and the version of Wechsler and RPM they were administered; autistics with Wechsler FSIQ under 85 were unique in having a relative advantage on RPM. Charman et al. [22] reported significantly higher RPM than Wechsler scores (FSIQ and PIQ) for a large population-based sample of school-aged autistic spectrum children. In Morsanyi and Holyoak [23], autistic children, who were matched with non-autistic controls on two Wechsler subtests (Block Design and Vocabulary), displayed a numeric, though not significant, advantage within the first set of Raven’s Advanced Progressive Matrices items.

The nature of autistic intelligence was also investigated in an fMRI study [24]. Autistics and non-autistics matched on Wechsler FSIQ were equally accurate in solving the 60 RPM items presented in random order, but autistics performed dramatically faster than their controls. This advantage, which was not found in a simple perceptual control task, ranged from 23% for easier RPM items to 42% for complex analytic RPM items.

Autistics’ RPM task performance was associated with greater recruitment of extrastriate areas and lesser recruitment of lateral prefrontal and medial posterior parietal cortex, illustrating their hallmark enhanced perception [25].

One replicated manifestation of autistics’ enhanced perception is superior performance on the Wechsler Block Design subtest, suggesting a visuospatial peak of ability [26]. Even when autistics’ scores on all other Wechsler subtests fall below their RPM scores, their Block Design and RPM scores lie at an equivalent level [20].

Thus, enhanced occipital activity, superior behavioral performance on RPM, and visuospatial peaks co-occur in individuals whose specific diagnosis is autism, suggesting an increased and more autonomous role of perception in autistic reasoning and intelligence [24].

But what about individuals whose specific diagnosis is Asperger syndrome? In Dawson et al.’s previous investigations of autistics’ RPM performance, Asperger individuals were excluded. Asperger syndrome is a relatively low-prevalence [27] autistic spectrum diagnosis characterized by intelligence scores within the normal range (non-Asperger autistics may have IQs in any range). Two main distinctions between the specific diagnosis of autism and Asperger syndrome are relevant to the question of intelligence in the autistic spectrum. First, while their verbal and nonverbal communication is not necessarily typical across development, Asperger individuals do not, by diagnostic definition, exhibit characteristic autistic delays and anomalies in spoken language. While both autistic and Asperger individuals produce an uneven profile on Wechsler subtests, Asperger individuals’ main strengths, in contrast with those of autistics (see [20]), are usually seen in verbal subtests (count me in)  (as illustrated in Figure 2; see also [28]). Although RPM is often deemed a “nonverbal” test of intelligence, in practice typical individuals often rely on verbal abilities to perform most RPM items. (NOTE: I have commented on this in another post, regarding the pre-test tutoring available to students, during which the “rules of the game” are explained. Is this “cheating” in that “fluid intelligence” and not learned procedures, are supposedly being measured?)  

Second, at a group level, Asperger individuals do not display the autistic visuospatial peak in Wechsler scales; rather, their Block Design subtest performance tends to be unremarkably equivalent to their FSIQ (see Figure 2 and also [32]). The question of whether Asperger individuals display the autistic advantage on RPM over Wechsler is thus accompanied by the possibility that the Asperger subgroup represents an avenue for further investigating the nature of this discrepancy. (I am quite baffled at times by my “native” Asperger experience, which is overwhelmingly visual-sensory, but that verbal language is a “go to tool” for translating that experience into “acceptable” form. Very practical! Why does this “arrangement” seem to occur in Asperger’s?)

Our goal was to investigate whether the autistic advantage on RPM is also characteristic of Asperger syndrome and, further, whether RPM performance reveals a fundamental property of intelligence across the autistic spectrum. If the mechanism underlying autistics’ advantage on RPM is limited to visuospatial peaks or to language difficulties disproportionately hampering Wechsler performance, then the advantage should not be found in Asperger individuals. Indeed, as predicted by Bolte et al. [21], Asperger individuals should perform even better on Wechsler scales than on RPM. If instead the underlying mechanism is more general and versatile, then Asperger individuals should demonstrate at least some advantage on RPM. Preliminary findings have suggested this to be the case. In one recent study, Asperger children (age 6–12) obtained significantly higher raw scores on RPM than did typical children matched on age and Wechsler performance [33].

For all the “poo-bah” and graphs, go to original paper (and related papers):  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182210/

Discussion

Asperger individuals differ from autistics in their early speech development, in having Wechsler scores in the normal range, and in being less likely to be characterized by visuospatial peaks. In this study, Asperger individuals presented with some significant advantages, and no disadvantages, on RPM compared to Wechsler FSIQ, PIQ, and VIQ. Asperger adults demonstrated a significant advantage, relative to their controls, in their RPM scores over their Wechsler FSIQ and PIQ scores, while for Asperger children this advantage was found for their PIQ scores. For both Asperger adults and children and strikingly similar to autistics in a previous study [20], their best Wechsler performances were similar in level to, and therefore plausibly representative of, their general intelligence as measured by RPM.

We have proposed that autistics’ cognitive processes function in an atypically independent way, leading to “parallel, non-strategic integration of patterns across multiple levels and scales” [36] and to versatility in cognitive processing [26].

Such “independent thinking” suggests ways in which apparently specific or isolated abilities can co-exist with atypical but flexible, creative, and complex achievements. Across a wide range of tasks, including or perhaps

especially in complex tasks, autistics do not experience to the same extent the typical loss or distortion of information that characterizes non-autistics’ mandatory hierarchies of processing

Therefore, autistics can maintain more veridical representations (e.g. representations closer to the actual information present in the environment) when performing high level, complex tasks. The current results suggest that such a mechanism is also present in Asperger syndrome and therefore represents a commonality across the autistic spectrum. Given the opportunity, different subgroups of autistics may advantageously apply more independent thinking to different available aspects of information: verbal information, by persons whose specific diagnosis is Asperger’s, and perceptual information, by persons whose specific diagnosis is autism.

One could alternatively suggest that the construct measured by RPM is relative and thus would reflect processes other than intelligence in autistic spectrum individuals. However, a very high item difficulty correlation is observed between autistic individuals and typical controls, as well as between Asperger individuals and typical controls. As previously noted [20], these high correlations indicate that RPM is measuring the same construct in autistics and non-autistics, a finding now extended to Asperger syndrome.

Therefore, dismissing these RPM findings as not reflecting genuine human intelligence in autistic and Asperger individuals would have the same effect for non-autistic individuals.

The discrepancies here revealed between alternative measures of intelligence in a subgroup of individuals underline the ambiguous non-monolithic definition of intelligence. Undoubtedly, autistics’ intelligence is atypical and may not be as easily assessed and revealed with standard instruments. But given the essential and unique role that RPM has long held in defining general and fluid intelligence (e.g., [37]),

we again suggest that both the level and nature of autistic intelligence have been underestimated.

Thus, while there has been a long tradition of pursuing speculated autistic deficits, it is important to consider the possibility of strength-based mechanisms as underlying autistics’ atypical but genuine intelligence.

Gangs of great white sharks / Researchers Dumbfounded

I fell for one of those “cute and clever” (gag me with a spoon) gotcha! articles on pop-media: In my “not quite awake” Saturday morning state, I fantasized that Asperger behavior resembles that of the Great Whites….

Yes, great white sharks are typically solitary creatures, so researchers were a bit surprised to realize just how many of them travel to the same spot halfway between Hawaii and Mexico’s Baja California. And yes, it’s true that the strange behavioral patterns the sharks exhibit once they get there – diving 1,000 feet toward the ocean floor and back up again, as often as every 10 minutes, for example, have never been previously recorded in any study of great white shark migration. 

We do know that they can swim up to 25 miles per hour. We do know that they are nearly impossible to hold captive and will either refuse food, kill other sharks in the tank, or bash themselves against the glass of the aquarium until they die or are released. (Shark meltdown?) And we know that at this moment, hundreds of them are circling the depths of the Pacific Ocean, diving for some unknown goal that’s incredibly important to them. That’s fine. They’re fine. This is all probably going to turn out fine.

Dear “Nervous Neurotypicals”: Asperger types aren’t at all like great white sharks: we live on land. Amongst you. Next door to you. We might be your brother, sister or cute grandkid. We’re not like sharks at all. Are we?

Also popular:

“Jaws” is back. The 1,326-pound great white shark named Hilton has been spotted off the coast of Georgia this week — and he’s not alone. Miss Costa, a 1,668-pound great white, is close by. Both of the 12-foot great whites are currently being tracked by OCEARCH, a non-profit organization that researches great white sharks and other apex predators. The sharks were fitted with tags that ping to transmit their location as soon as their fins break the surface.

Although we look nothing like the great white, the similarities of “NT” ideas about the species are creepily familiar if you are AS. 

Asperger’s are visual / sensory thinkers….we notice patterns right away…

And we are social, when we’re hungry… 

The truth? While sharks kill fewer than 20 people a year, their own numbers suffer greatly at human hands. Between 20 and 100 million sharks die each year due to fishing activity, (yeah, you can call it that, but “our cousins” die due to stupid neurotypical superstition… sound familiar?) according to data from the Florida Museum of Natural History’s International Shark Attack File.