Debunking Left Brain, Right Brain Myth / Paper – U. Utah Neuroscience

An Evaluation of the Left-Brain vs. Right-Brain Hypothesis with Resting State Functional Connectivity Magnetic Resonance Imaging

Jared A. Nielsen , et al, Affiliation Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, United States of America (See original for authors and affiliations)

Published: August 14, 2013

https://doi.org/10.1371/journal.pone.0071275 (Extensive paper with loads of supporting graphics, etc.) (Heavy going technical paper)

Abstract

Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.

From Discussion

In popular reports, “left-brained” and “right-brained” have become terms associated with both personality traits and cognitive strategies, with a “left-brained” individual or cognitive style typically associated with a logical, methodical approach and “right-brained” with a more creative, fluid, and intuitive approach. Based on the brain regions we identified as hubs in the broader left-dominant and right-dominant connectivity networks, a more consistent schema might include left-dominant connections associated with language and perception of internal stimuli, and right-dominant connections associated with attention to external stimuli.

Yet our analyses suggest that an individual brain is not “left-brained” or “right-brained” as a global property, but that asymmetric lateralization is a property of individual nodes or local subnetworks, and that different aspects of the left-dominant network and right-dominant network may show relatively greater or lesser lateralization within an individual. If a connection involving one of the left hubs is strongly left-lateralized in an individual, then other connections in the left-dominant network also involving this hub may also be more strongly left lateralized, but this did not translate to a significantly generalized lateralization of the left-dominant network or right-dominant network. Similarly, if a left-dominant network connection was strongly left lateralized, this had no significant effect on the degree of lateralization within connections in the right-dominant network, except for those connections where a left-lateralized connection included a hub that was overlapping or close to a homotopic right-lateralized hub.

It is also possible that the relationship between structural lateralization and functional lateralization is more than an artifact. Brain regions with more gray matter in one hemisphere may develop lateralization of brain functions ascribed to those regions. Alternately, if a functional asymmetry develops in a brain region, it is possible that there may be hypertrophy of gray matter in that region. The extent to which structural and functional asymmetries co-evolve in development will require further study, including imaging at earlier points in development and with longitudinal imaging metrics, and whether asymmetric white matter projections [52], [53] contribute to lateralization of functional connectivity.

We observed a weak generalized trend toward greater lateralization of connectivity with age between the 20 hubs included in the analysis, but most individual connections did not show significant age-related changes in lateralization. The weak changes in lateralization with age should be interpreted with caution because the correlations included >1000 data points, so very subtle differences may be observed that are not associated with behavioral or cognitive differences. Prior reports with smaller sample sizes have reported differences in lateralization during adolescence in prefrontal cortex [54] as well as decreased structural asymmetry with age over a similar age range [55].

Similarly, we saw no differences in functional lateralization with gender. These results differ from prior studies in which significant gender differences in functional connectivity lateralization were reported [16], [17]. This may be due to differing methods between the two studies, including the use of short-range connectivity in one of the former reports and correction for structural asymmetries in this report. A prior study performing graph-theoretical analysis of resting state functional connectivity data using a predefined parcellation of the brain also found no significant effects of hemispheric asymmetry with gender, but reported that males tended to be more locally efficient in their right hemispheres and females tended to be more locally efficient in their left hemispheres [56].

It is intriguing that two hubs of both the left-lateralized and right-lateralized network are nearly homotopic. Maximal left-lateralization in Broca Area corresponds to a similar right-lateralized homotopic cluster extending to include the anterior insula in the salience network. Although both networks have bilateral homologues in the inferior frontal gyrus/anterior insular region, it is possible that the relative boundaries of Broca Homologue on the right and the frontoinsular salience region may “compete” for adjacent brain cortical function. Future studies in populations characterized for personality traits [57] or language function may be informative as to whether local connectivity differences in these regions are reflected in behavioral traits or abilities. The study is limited by the lack of behavioral data and subject ascertainment available in the subject sample. In particular, source data regarding handedness is lacking. However, none of the hubs in our left- and right- lateralized networks involve primary motor or sensory cortices and none of the lateralized connections showed significant correlation with metrics of handedness in subjects for whom data was available.

Despite the need for further study of the relationship between behavior and lateralized connectivity, we demonstrate that left- and right-lateralized networks are homogeneously stronger among a constellation of hubs in the left and right hemispheres, but that such connections do not result in a subject-specific global brain lateralization difference that favors one network over the other (i.e. left-brained or right-brained). Rather, lateralized brain networks appear to show local correlation across subjects with only weak changes from childhood into early adulthood and very small if any differences with gender.

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s